Transformaciones lineales: núcleo e imagen.
Teorema 1
Sea T: V S W una transformación lineal. Entonces para todos los vectores u, v, v1,
v2, . . . , vn en V y todos los escalares a1, a2, . . . , an:
i. T(0) = 0
ii. T(u - v) = Tu - Tv
iii. T(a1v1 + a2v2 +. . .+ anvn) = a1Tv1 + a2Tv2 +. . .+ anTvn
Nota. En la parte i) el 0 de la izquierda es el vector cero en V; mientras que el 0 de la
derecha es el vector cero en W.
Teorema 2
Sea V un espacio vectorial de dimensión finita con base B = {v1, v2, . . . , vn}. Sean w1,
w2, . . . , wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V
en W tales que T1vi = T2vi = wi para i = 1, 2, . . . , n. Entonces para cualquier vector v ∈
V, T1v = T2v; es decir T1 = T2.
No hay comentarios:
Publicar un comentario