Una técnica muy conveniente utilizada en algunas tareas matemáticas es aquella conocida como fracciones idea principal consiste en cambiar la forma que puede ser expresado un cociente entre polinomios a otra forma más conveniente para cierto tipo de cálculo.
Ejemplo 4.1 Determine los valores de las constantes a y b para que satisfagan:
Solución
La forma más general de una cuadrática es: f (x) = a x2 + b x + c donde los coeficientes a, b, y c son constantes num´ericas. El problema consiste en determinar estos coeficientes.
Así pues los parámetros a, b, y c se vuelven ahora las incógnitas. Y para poderlas determinar requerimos de ecuaciones o igualdades que deben satisfacer. Para determinar estas ecuaciones debemos usar los puntos.
Para que la función pase por el punto P (1, 4) se debe cumplir que f (x = 1) = 4,
es decir, se debe cumplir: a (1)2 + b (1) + c = 4
es decir, se debe cumplir: a + b + c =4
Procediendo de igual manera con el punto Q(−1, 2): formulamos la ecuación: a − b + c =2 y para R(2, 3): 4a + 2b + c = 3.
Resumiendo para que la función f (x) = a x2 + b x + c pase por los puntos P , Q, y R deben cumplirse las ecuaciones:
a + b + c = 4
a − b + c = 2
4a + 2b + c = 3
La solución a este sistema es: a = 2/3, b = 1, y c =11/3
La misma situación presentada en el problema de las fracciones parciales que originaba un sistema inconsistente, se puede presentar en la determinación de funciones. Y la conclusión es similar: si el sistema originado es inconsistente lo que se concluye es que no existe una funci´on con esa forma general que pase exactamente por los puntos dados.
No hay comentarios:
Publicar un comentario